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a b s t r a c t

This paper presents a quantized output feedback model reference adaptive control (MRAC) scheme for
a class of single-input and single-output discrete-time linear time-invariant systems with unknown
parameters. Our method, firstly, integrates the well-known MRAC and quantized control techniques
to construct a quantized output feedback adaptive control law with parameter update laws. Then,
some vital technical lemmas are developed, fundamentally applicable to finite and infinite quantized
output feedback MRAC. Moreover, we prove that in the case of infinite quantization, appropriately
choosing the output quantizer’s sensitivity affords the proposed adaptive control law to ensure closed-
loop stability and achieve bounded or asymptotic output tracking. The significant advantage of the
developed adaptive control scheme is combining the benefits of the classic MRAC and quantized
control. Compared with current adaptive tracking control schemes, the developed scheme not only
reduces the feedback information requirement, but also has full capability to achieve closed-loop
stability and output tracking. The effectiveness of the proposed MRAC scheme is verified through
several simulations.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Real control systems suffer from parametric, structural, and
nvironmental uncertainties due to payload variation or system
ging, component failures, and external disturbances. Moreover,
ue to the sensors’ accuracy and measurement limitations and
he computers’ computational capabilities, controlling practical
ystems often suffers from measurement errors, saturation, and
omputational burden. Considering these real-world demands,
he quantized feedback adaptive control technique provides a fea-
ible solution to adaptively control uncertain systems involving
uantized measurements.
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To date, controlling uncertain systems with quantized mea-
surements has gained much research interest, with stability anal-
ysis, stabilizing control, tracking control, and their applications
being extensively studied. For example, Liu et al. (2012) employed
the cyclic-small-gain theorem and proposed a robust approach
to solve the tracking problem of uncertain systems with finite
output quantization. In De Persis and Mazenc (2010), the authors
proposed a Lyapunov–Krasovskii function-based robust approach
to analyze the stability of uncertain quantized time-delay non-
linear systems. Considering that adaptive control is a powerful
tool to handle system uncertainties, some researchers developed
various state feedback adaptive control methods to solve the
stabilizing and tracking problems of uncertain control systems
with quantized measurements (Liu, Li et al., 2021; Moustakis
et al., 2018; Su & Chesi, 2018; Yu & Lin, 2016; Zhou et al.,
2018). Since the system states may be difficult to obtain, some
researchers addressed adaptive control problems for uncertain
systems by using quantized output feedback (Sun et al., 2021;
Wang et al., 2017; Yu & Lin, 2021; Zouari et al., 2017). The quan-
tized control methods are exploited in several applications, such
as attitude stabilization of the flexible spacecraft in Liu, Liu et al.
(2021), vision-based landing control of the airplane in Sharon
et al. (2010), and distributed networked control systems in Ge
et al. (2017). The literature related to quantized control sys-
tems commonly proposes methods designed on the state-space
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ormulations. The well-known backstepping technique proposed
n Krstic et al. (1995) is the main tool to design adaptive control
aws for nonlinear systems with quantized measurements.

Although adaptive quantized feedback control theory and ap-
lications have progressed significantly, the quantized output
eedback model reference adaptive control (MRAC) of linear time-
nvariant (LTI) systems covering continuous-time and discrete-
ime have not been studied yet. Recently, based on the classical
eference control theory (Tao, 2003) and the finite quantized
tabilizing control theory (Brockett & Liberzon, 2000), we devel-
ped a finite quantized output feedback model reference control
cheme for a general class of minimum-phase discrete-time LTI
ystems in Zhang et al. (2022). However, in Zhang et al. (2022), we
id not consider parameter uncertainties. Therefore a fundamen-
al problem still remains: for a general class of minimum-phase
iscrete-time LTI systems with unknown parameters, whether
quantized output feedback version of the well-known MRAC

aw is effective or not. Essentially different from that in Zhang
t al. (2022), the adaptive control for systems with unknown
arameters involves the following new technical issues which are
ot addressed in Zhang et al. (2022):

• how to construct an adaptive control law and a parame-
terized tracking error model with parameter estimates and
quantized error;

• how to develop adaptive parameter update laws based on a
further derived error model using a new estimation signal
depending on quantized error;

• how to perform closed-loop stability and output tracking
analysis in the presence of the unbounded tracking error,
quantized error and estimation error; and

• how to achieve global output tracking performance for sys-
tems with unknown initial conditions.

hese concerns are all addressed in this work. In summary, the
ain contributions are as follows:

(1) We solve the MRAC problem for a general class of minimum-
phase discrete-time LTI systems using quantized output
feedback. By combining the classic MRAC and quantized
feedback control, the proposed scheme reduces the feedback
information requirement and achieves closed-loop stability
and output tracking. To the best of our knowledge, such a
method has not been reported yet.

(2) We derive some fundamental results applicable to finite
and infinite quantized output feedback MRAC. We mainly
address the infinite quantized output feedback MRAC with
finite quantization-based results as support. For the case
of infinite quantization, all parameters and signals in the
developed MRAC law are analytically specified, and essen-
tial relation between the quantized and the exact output
feedback MRAC is derived.

(3) Compared with the current literature, the proposed MRAC
scheme has several distinctive characteristics. First, we an-
alytically construct an MRAC law independent of the sys-
tem’s initial conditions by solely employing the reference
input, quantized output, and estimated parameters. Sec-
ond, the proposed MRAC scheme depends on the standard
design conditions, which are practically the same as the
classic MRAC scheme (Tao, 2003). Third, the proposed MRAC
scheme utilizes quantized output feedback without requir-
ing the system states to be observable.

The remainder of this paper is as follows. Section 1 provides
notation description, while Section 2 introduces the controlled
lant and the research problems, and reviews some fundamen-
als related to the output feedback model reference control, and
ection 3, which is the main part of this paper, gives the design
2

details of the proposed quantized output feedback MRAC scheme.
Section 4 presents the simulation results and, finally, Section 5
concludes this work.

Notation: In this work we use C, R, Z, Z+ to denote the sets of
complex numbers, real numbers, integers, and positive integers,
respectively. Furthermore, z and z−1 denote the forward and
backward shift operators, i.e., zx(t) = x(t + 1) and z−1x(t) =

x(t − 1), where t ∈ {0, 1, 2, 3, . . .}, x(t) ≜ x(tT ) for a sampling
period T > 0, and x(t) denotes any signal of any finite dimension.
We also use the notation L∞ and [·]: L∞ for a signal space defined
as L∞

= {X(t) : ∥X(·)∥∞ < ∞} with ∥X(·)∥∞ ≜ supt≥0 |X(t)|
and [·] is defined as [X(t)] ≜ max{k ∈ Z : k < X(t)}, where
X(t) ∈ R denotes any signal on R. Moreover, y(t) = G(z)u(t)
refers to the output y(t) of a discrete-time LTI system represented
by a transfer function G(z) with an input u(t). This notation
is simple to combine time and z-domain signal operations, is
helpful for control design and analysis purposes, avoiding causal-
ity contradiction problems and complex convolution expressions
for control system presentation. A similar notation is exploited
in Chen and Zhang (1990), Goodwin and Sin (2014) and Tao
(2003).

2. Problem statement

This section presents the system model and the control prob-
lems addressed, and reviews some fundamentals of output feed-
back model reference control (MRC).

2.1. System model and control problems

System model. We consider the following single-input and
single-output (SISO) LTI system:

A(z)y(t) = kpB(z)u(t), t ≥ 0, (1)

where kp ̸= 0 is the constant high-frequency gain, and A(z) and
B(z) are monic polynomials of degrees n and m, respectively with
constant coefficients, i.e.,

A(z) = zn + an−1zn−1
+ · · · + a1z + a0,

B(z) = zm + bm−1zm−1
+ · · · + b1z + b0.

Without loss of generality, we assume that A(z) is unstable,
i.e., system (1) has at least one unstable pole. Note that n − m is
the input–output delay, named the system relative degree (Tao,
2003). Let ai, i = 0, 1, . . . , n − 1, and bj, j = 0, 1, . . . ,m − 1, are
all unknown. The values of y(t) cannot be accurately measured
and can only be finite quantized, denoted as q(y(t), ∆(t)), where
q : R × Z+

→ Z is the output quantizer.

Dynamic quantizer. In this paper, we use the following type of
the output quantizer:

q(y(t), ∆(t))

=

⎧⎪⎨⎪⎩
M, if y(t) > (M +

1
2 )∆(t),[

y(t)
∆(t) +

1
2

]
, if −(M +

1
2 )∆(t) < y(t) ≤ (M +

1
2 )∆(t),

−M, if y(t) ≤ −(M +
1
2 )∆(t),

(2)

where ∆(t) depends on t and is the sensitivity of q such that
∆(t) > 0. In this paper, we will claim that q(y(t), ∆(t)) saturates
f |y(t)| ≥ (M +

1
2 )∆(t); and q(y(t), ∆(t)) does not saturate if

y(t)| < (M +
1
2 )∆(t).

This paper considers the finite and infinite quantized output
cases simultaneously. For the finite quantized case,M is a positive
integer, while for the infinite quantized case, M = ∞.

As stated in Brockett and Liberzon (2000), the quantizer (2)
has some certain physical meanings and potential applications,
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.g., vision-based control. The authors in Brockett and Liberzon
2000) proposed (2) to address the stabilization problem of sys-
em (1) with known parameters. In this paper we employ (2) to
ddress the MRAC problem for system (1) with unknowns ai and
j. For a complete clarification on the quantizer (2), the reader is
eferred to Brockett and Liberzon (2000).

ontrol objective. The control objective of this paper is to de-
elop a quantized output feedback MRAC law u(t) for system (1)
ith unknowns ai and bj, ensuring that the closed-loop signals are
ounded, and y(t)−y∗(t) converges to a specific small residual set
symptotically, where y∗(t) is any given reference output signal
uch that y∗(t) ∈ L∞.

Remark 1. It is well known that the exact output feedback
MRAC scheme can achieve asymptotic tracking. However, for the
quantized output feedback case, the measurement error always
exists and cannot be ignored. Moreover, it is unknown and may
be unbounded. This leads that the quantized output feedback
MRAC scheme is difficult to still achieve asymptotic tracking.
In this paper, we derive a result (Corollary 1) which clarifies
some specified conditions when the quantized feedback case can
degrade into the exact feedback case.

Assumption. To meet the control objective, the following as-
sumptions are required.

(A1): The polynomial B(z) is stable.
(A2): The degree n of A(z) is known.
(A3): The relative degree n∗

= n − m is known.
(A4): The sign of the high-frequency gain kp is known, and
|kp| ≤ k0p for some known k0p > 0.
(A5): An upper bound on the magnitudes of λi(A(z)) is
known with λi(A(z)) being the zeros of A(z) on the complex
z-plane.

Assumption (A1) is a consequence of zero-pole cancellations
in MRAC of LTI systems. The proposed control law will cancel
the zeros of the system (1) and replaces them with those of the
reference model. For stability, such cancellations should occur
inside the unit circle of the complex z-plane, which implies that
B(z) should be stable. Assumption (A2) is used for determining
the parameter estimate vector’s dimension and can be relaxed
as: an upper bound on n is known. The reader is referred to Tao
(2003) for further details. Assumption (A3) is used for choosing
the reference output signal. The reference output model is

y∗(t) = Wm(z)r(t), Wm(z) =
1

Pm(z)
, (3)

where Pm(z) is a stable polynomial of degree n∗ and r(t) ∈ R
is an external reference input signal such that r(t) ∈ L∞. For
iscrete-time MRAC, Pm(z) is generally chosen as zn

∗

(Ioannou &
Sun, 1996; Tao, 2003), so do we in this paper. Assumption (A4)
means that the control direction of system (1) is known. The
literature commonly exploits the Nussbaum and other multiple-
model techniques to relax the control gain sign condition (see
some representative results, e.g., Chen et al. (2019), Ge and Wang
(2003) and Zhao et al. (2021)). Nevertheless, this paper does not
address the sign issue that requires further study. Assumption
(A5) is needed for the finite quantization case and means that
an upper bound on the maximum growth rate of the open-loop
output is known and is used for the control law design and
global convergence analysis. If it is known that the quantizer
q(y(0), ∆(0)) does not saturate in prior, then Assumption (A5) is
not needed. In the following analysis, this issue will be explained
whenever necessary.

It should be noted that the zeros and poles of system (1) are
allowed to be non-coprime, i.e., the state-space form of system (1)
3

is allowed to be unobservable. In the literature, the observable
condition is commonly employed when using output feedback.
However, in this work, the observable condition is not required.

This paper indicates that under the above standard assump-
tions, a quantized output feedback version of the standard MRAC
scheme in Tao (2003) is still effective, ensuring closed-loop sta-
bility and output tracking.

2.2. Fundamentals of output feedback MRC

Now, we review some fundamentals of the output feedback
MRC of discrete-time LTI systems in Tao (2003) that will be
utilized in the quantized output feedback MRAC design.

Matching equation. Before introducing the MRC law, we first
present the following lemma which specifies a fundamental equa-
tion for the control law design.

Lemma 2 (Tao, 2003). There exist constant vectors θ∗

1 ∈ Rn−1 and
θ∗

2 ∈ Rn such that

θ∗T
1 ω1(z)A(z) + kpθ∗T

2 ω2(z)B(z) = A(z) − B(z)zn
∗

, (4)

where

ω1(z) = [z−n+1, ..., z−1
]
T , ω2(z) = [z−n+1, ..., z−1, 1]T .

The proof of this lemma is presented in Tao (2003), while (4)
is the well-known matching equation for output feedback MRC of
LTI systems (Tao, 2003).

Output feedback MRC law. Utilizing θ∗

1 and θ∗

2 from (4), the MRC
law is designed as

u(t) = θ∗T
1 φ1(t) + θ∗T

2 φ2(t) +
1
kp

r(t), t ≥ 0, (5)

with

φ1(t) = ω1(z)u(t), φ2(t) = ω2(z)y(t). (6)

The following lemma specifies the capability of law (5).

Lemma 3 (Tao, 2003). Unique θ∗

1 and θ∗

2 exist that meet (4) and
ensure the MRC law (5) leads to exact output tracking

y(t + n∗) − y∗(t + n∗) = 0, ∀t ≥ 0,

or system (1).

The proof of Lemma 3 is presented in Tao (2003). The param-
ters θ∗

1 and θ∗

2 of Lemma 3 are named matching parameters, as
these parameters afford the control law (6) to exactly match the
closed-loop system to the reference model (3).

Remark 4. If A(z) and B(z) are not coprime, then θ∗

1 and θ∗

2
satisfying (4) are not unique. However, Lemma 3 indicates that
regardless of A(z) and B(z) being coprime or not, the θ∗

1 and θ∗

2
parameters in (5) are unique. This property is proven in the proof
of Theorem 6.1 in Tao (2003), and also can be concluded from the
proof of Lemma 5 presented in this paper. Moreover, if the MRC
law (5) uses an arbitrary pair of θ∗

1 and θ∗

2 satisfying (4), this leads
to a tracking error of B(z)e(t + n − m) = 0, which cannot imply
exact tracking if not all zeros of B(z) are at the origin. □

Lemmas 2–3 are the fundamentals of MRC of LTI systems
and are the foundation of the quantized output feedback MRAC
scheme.

3. Quantized output feedback MRAC design

This section develops a quantized output feedback MRAC
scheme for system (1), where the parameters ai, bj and kp are
unknown.
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.1. Quantized output feedback MRAC structure

In this sub-section, we construct a basic structure of the
uantized output feedback MRAC law. Then, we specify the cor-
esponding parameter update laws, and finally, we provide a
losed-loop tracking error equation.

asic structure of adaptive control law. Motivated by (5), we
esign the quantized output feedback MRAC law as

(t) =

⎧⎨⎩0, if t ∈ [0, t0),
θ T
1 (t)φ1(t) + θ T

2 (t)φq(t)
+θ3(t)r(t), if t ∈ [t0, ∞),

(7)

where t0 is the initial operation time of the adaptive control law
(t0 will be specified in Lemma 6), θ1(t) and θ2(t) are estimates of
θ∗

1 and θ∗

2 in Lemma 3, respectively, θ3(t) is an estimate of 1
kp
, and

φq(t) = ω2(z)(∆(t)q(y(t), ∆(t))) (8)

with ∆(t) to be designed later. Note that θi(t), i = 1, 2, 3, need
to be updated by some parameter update laws. With (8), we
introduce some notation that will be used next:

φ(t) = [φT
1 (t), φ

T
q (t), r(t)]

T
∈ R2n, (9)

θ (t) = [θ T
1 (t), θ

T
2 (t), θ3(t)]

T
∈ R2n, (10)

θ̃ (t) = θ (t) − θ∗, θ∗
= [θ∗T

1 , θ∗T
2 ,

1
kp

]
T

∈ R2n. (11)

arameter update laws. We define a quantized output based
tracking error and a quantized output based estimation error as

eq(t) = ∆(t)q(y(t), ∆(t)) − y∗(t) ∈ R, (12)

q(t) = eq(t) + ρ(t)ξ (t) ∈ R, (13)

espectively, where ρ(t) is the estimate of kp, and

(t) = θ T (t)φ(t − n∗) − θ T (t − n∗)φ(t − n∗) ∈ R. (14)

ote that signals eq(t), ϵq(t) and ξ (t) are all available at the
current time instant. Thus, we employ these signals and design
the update laws for θ (t) and ρ(t) as

θ (t + 1) = θ (t) −
sign[kp]Γ ϵq(t)φ(t − n∗)

m2(t)
+ fθ (t), (15)

(t + 1) = ρ(t) −
γ ϵq(t)ξ (t)

m2(t)
+ fρ(t), (16)

where Γ and γ are adaptive gains such that γ ∈ (0, 2) and
Γ = diag{γ1, . . . , γ2n}, 0 < γi < 2/k0p , with i = 1, . . . , 2n, and
k0p defined in Assumption (A4),

m(t) =

√
1 + φT (t − n∗)φ(t − n∗) + ξ 2(t), (17)

nd fθ (t) = [fθ1(t), . . . , fθ2n(t)]T and fρ(t) are modification terms.
This paper exploits the parameter projection technique to design
fθ (t) and fρ(t), for which the knowledge of a convex set containing
θ∗ and kp is needed. Thus, we make the following assumption:

(A6) The lower bound θ a
i and upper bound θb

i of the ith
component θ∗

i of θ∗, i = 1, 2, . . . , 2n, and those of kp, denoted
as ρa and ρb, are known.

This assumption is standard for a robust adaptive control
design (Tao, 2003), Ioannou and Sun (1996). Given Assumption
(A6), we design fθ (t) and fρ(t) as

fθ i(t) =

⎧⎨⎩0, if θi(t) ∈ [θ a
i , θ

b
i ],

θb
i − θi(t) − pθ i(t), if θi(t) + pi(t) > θb

i ,
a a

(18)

θi − θi(t) − pθ i(t), if θi(t) + pi(t) < θi ,

4

fρ(t) =

⎧⎨⎩0, if ρ(t) ∈ [ρa, ρb
],

ρb
− ρ(t) − pρ(t), if ρ(t) + pρ(t) > ρb,

ρa
− ρ(t) − pρ(t), if ρ(t) + pρ(t) < ρa,

(19)

where pθ i(t) is the ith component of pθ (t) with pθ (t) =

−
sign[kp]Γ ϵq(t)φ(t−n∗)

m2(t)
and pρ(t) = −

γ ϵq(t)ξ (t)
m2(t)

.

uantized output-based tracking error equation. Let the quan-
ized error and the tracking error be

(y(t), ∆(t)) = ∆(t)q(y(t), ∆(t)) − y(t), (20)

e(t) = y(t) − y∗(t), (21)

espectively. Since y(t) is not available, the two error signals
(y(t), ∆(t)) and e(t) are not available.

The following lemma specifies a critical relationship between
he tracking, parameter estimation, and quantized errors, which
s crucial for designing ∆(t) and performing stability analysis.

emma 5. The quantized output feedback MRAC law (7), applied
o system (1), provides the tracking error equation as

(t + n∗) = kpθ̃ T (t)φ(t) + d0(t), t ≥ t0, (22)

here φ(t) and θ̃ (t) are defined in (9)–(11), respectively, and

0(t) = kpθ∗T
2 ω2(z)s(y(t), ∆(t)).

The proof of Lemma 5 is given in the Appendix. This equation
mplies e(t + n∗) = 0 if θ (t) = θ∗ and s(y(t), ∆(t)) = 0.
owever, since the parameter update law (15) does not reply
n persistent excitation condition or exact feedback, the conver-
ence of θ (t) cannot be guaranteed. Moreover, the boundedness
f s(y(t), ∆(t)) in (20) also cannot be guaranteed for the finite
uantized feedback case.

.2. Technical lemmas

This sub-section derives some technical lemmas that are cru-
ial for the stability and output tracking analysis. The reading flow
s optimized by presenting some long proofs in the Appendix. We
efine

φ̄(t) = [φT
1 (t), φ

T
q (t)]

T , (23)
λ = λ0 + an upper bound ofmax{magnitudes of λi(A(z))},

where λ0 > 0 is a constant. Given Assumption (A5), we see that
is available for the adaptive control design.
The following lemmas will sequentially specify a key time

instant of the quantizer being non-saturated, an estimation error
ϵq(t) expression, the parameter update laws capabilities, two key
characteristics of φ̄(t), and a property of the quantized error
s(y(t), ∆(t)).

Lemma 6. Given Assumption (A5), if u(t) = 0 and ∆(t) = c0λkt

with c0 > 0 and k ≥ 1 being any two constants, then there always
exists a well-defined number t0 as

t0 ≜ min {t ≥ 1 : |q(y(t), ∆(t))| ≤ M − 1} .

Proof. If u(t) = 0, y(t) grows at most exponentially and |y(t)| ≤

k0(λ − λ0)t with k0 being some constant. If ∆(t) = c0λkt with
c0 > 0 and k ≥ 1, ∆(t) grows faster than |y(t)|. Thus, no
matter whether q(y(0), ∆(0)) saturates or not, there exists some
finite time instant ts such that q(y(t), ∆(t)) will never saturate
for all t ≥ ts. Then, the lemma’s result follows the definition of
q(y(t), ∆(t)) in (2). □
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emark 7. Since it is unknown whether q(y(0), ∆(0)) is satu-
rated or not, we introduce t0. Lemma 6 shows that regardless
q(y(0), ∆(0)) is saturated or not, t0 exists and q(y(t0), ∆(t0)) is not
saturated. If M = ∞ or given that q(y(0), ∆(0)) is not saturated
in prior, then t0 will be zero and Assumption (A5) is no longer
required. □

Lemma 8. The estimation error ϵq(t) in (13) satisfies

ϵq(t) = kpθ̃ T (t)φ(t − n∗) + ρ̃(t)ξ (t) + d1(t), (24)

where ρ̃(t) = ρ(t) − kp and

d1(t) = (1 + kpθ∗T
2 ω2(z)z−n∗

)s(y(t), ∆(t)). (25)

Proof. From (12)–(14), we have

ϵq(t) = ∆(t)q(y(t), ∆(t)) − y∗(t) + ρ̃(t)ξ (t) + kpξ (t)
= s(y(t), ∆(t)) + e(t) + ρ̃(t)ξ (t) + kpξ (t).

Then, based on (14) and (22), we have

ϵq(t) = kp(θ T (t − n∗) − θ∗)φ(t − n∗) + ρ̃(t)ξ (t)

+ kp(θ T (t)φ(t − n∗) − θ T (t − n∗)φ(t − n∗))

+ d0(t − n∗) + s(y(t), ∆(t)) (26)

which derives the lemma’s result. □

Lemma 9. The parameter update laws (15)–(16) ensure that θ (t) ∈

L∞, ρ(t) ∈ L∞, ϵq(t)
m(t) ∈ L∞, and

t2∑
t=t1

ϵ2
q (t)

m2(t)
≤ α1 + β1

t2∑
t=t1

d21(t)
m2(t)

, (27)

t2

t=t1

∥θ (t + t0) − θ (t)∥2
2 ≤ α2 + β2

t2∑
t=t1

d21(t)
m2(t)

, (28)

or all t2 > t1 ≥ 0, any finite t0 > 0, and some constants
i > 0, βi > 0, i = 1, 2, with d1(t) in (25).

The proof of Lemma 9 is given in the Appendix.

emark 10. For the finite quantized feedback case, the modifica-
tion terms fθ (t) and fρ(t) in (15)–(16) are necessary to ensure the
oundedness of θ (t) and ρ(t). This is because the finite quantized

output feedback leads to the unboundedness of the quantized
error, and the unbounded quantized error may lead to the un-
boundedness of parameter estimates. However, for the infinite
quantized output feedback case, the quantized error is bounded,
and the modification terms can be eliminated from (15)–(16). In
other words, for the case of M = ∞, Assumption (A6) is no longer
required. □

Lemma 11. The signal φ̄(t) satisfies

φ̄(t + 1) = A∗φ̄(t) + b∗(y(t + n∗) − d0(t)) + d2(t) (29)

for A∗ being stable, where

d2(t) = [0, . . . , 0, z−n+1A(z)s(y(t), ∆(t))]T ∈ R2n−1,

A∗
=

⎡⎢⎣ En−2 0(n−2)×n
θ∗T
1 θ∗T

2
0(n−1)×(n−1) En−1

A∗T
1 A∗T

2

⎤⎥⎦ ∈ R(2n−1)×(2n−1),

b∗
=

[
b∗

1
∗

]
∈ R2n−1, b∗

1 =

[
0, . . . , 0,

1
]T

∈ Rn−1,
b2 kp
5

Ei =

⎡⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

⎤⎥⎥⎦ ∈ Ri×(i+1), i = n − 1, n,

{A∗T
1 ∈ Rn−1, A∗T

2 ∈ Rn, b∗

2 ∈ Rn
}

=

{
{[kpz∗T , kp, 0, . . . , 0], −p∗T , [0, . . . , 0]} if n∗ > 1,
{kpz∗T

+ kpθ∗T
1 , −p∗T

+ kpθ∗T
2 , [0, . . . , 0, 1]} if n∗

= 1,

with p∗
= [a0, ..., an−1]

T
∈ Rn and z∗

= [b0, ..., bm−1]
T

∈ Rm.

The proof of Lemma 11 is provided in the Appendix. Since
A∗ is stable, there exists a nonsingular matrix G∗

∈ C(2n−1)×(2n−1)

such that ∥G∗A∗G∗−1
∥2 < 1, where ∥ · ∥2 denotes the induced

Euclidean matrix norm, i.e., for a given vector norm ∥ ·∥ on C2n−1

and any matrix Q ∈ C(2n−1)×(2n−1), ∥Q∥2 = sup∥x∥=1 ∥Qx∥. We
introduce G∗ because the vector norm ∥ · ∥ on R2n−1 used next is
defined as ∥x∥ = ∥G∗x∥2 for any x ∈ R2n−1.

Lemma 12. The signal φ̄(t) satisfies

∥φ̄(t + 1)∥ ≤ (c0 + c1ω(t))∥φ̄(t)∥ + ∥d4(t)∥ (30)

for some constants c0 ∈ (0, 1), c1 > 0, and

ω(t) =

⏐⏐⏐⏐ϵq(t + n∗)
m(t + n∗)

⏐⏐⏐⏐+ ∥θ (t + n∗) − θ (t)∥2, (31)

4(t) = (−b∗(1 + kpθ∗T
2 ω2(z)) + [0, . . . , 0, z−n+1A(z)]T )

· s(y(t), ∆(t)) + b∗y∗(t + n∗).

roof. With (13), (14), and (21), it follows from (29) that

¯ (t + 1) = A∗φ̄(t) + b∗(y∗(t + n∗) − d0(t) + ϵq(t + n∗)

−ρ(t + n∗)(θ (t + n∗) − θ (t))Tφ(t)) + d3(t), (32)

here d3(t) = (−b∗
+ [0, . . . , 0, z−n+1A(z)]T )s(y(t), ∆(t)).

Then, with the definitions of φ(t), φ̄(t), and ω(t) in (9), (23)
nd (31) and in addition to the boundedness of y∗(t), we derive
rom (31) and (32) that (30) holds. □

emma 13. If q(y(t), ∆(t)) is not saturated, then

s(y(t), ∆(t))| ≤
1
2
∆(t). (33)

roof. If q(y(t), ∆(t)) is not saturated, it derives from (2) that
(y(t), ∆(t)) =

[
y(t)
∆(t) +

1
2

]
. Then, from the definition of [·] in the

last paragraph of Section 1, we have y(t)
∆(t) −

1
2 ≤ q(y(t), ∆(t)) ≤

y(t)
∆(t) +

1
2 which follows (33). □

All the lemmas of this paper apply to finite and infinite quan-
tized output feedback cases. Next, we will use these lemmas to
analyze the closed-loop performance.

3.3. Stability and output tracking analysis

This sub-section analyzes the system’s performance and dis-
cusses the finite and infinite quantized cases.

Finite quantized output feedback case. Based on the technical
lemmas presented above, we provide the following:

Theorem 14. Given Assumptions (A1)–(A6), if ∆(t) is chosen such
that q(y(t), ∆(t)) is not saturated for all t ≥ t0 and ∆(t) grows at
ost exponentially with ∆(t) = c λkt , t < t , then the adaptive
0 0
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ontrol law (7) with parameter update laws (15)–(16), applied to
ystem (1) with unknown ai, bj and kp, ensures that φ̄(t) ∈ L∞ and
t2∑

t=t1

(y(t) − y∗(t))2 ≤ µ1 + µ2

t2∑
t=t1

∆2(t) (34)

or all t2 > t1 ≥ t0 + n + n∗ and some constants µi > 0, i = 1, 2.

The proof of Theorem 14 is given in the Appendix. Theo-
em 14 is fundamental for the quantized output feedback MRAC
f uncertain LTI systems and reveals a relationship between the
lassic MRAC and the finite quantized output feedback control.
he closed-loop stability is not clarified in Theorem 14, and may
e solved based on the well-known saturation techniques of LTI
ystems under some additional conditions for saturation designs.
his problem is rather complicated requiring further study.
Next, based on Theorem 14, we derive some more specific

esults for the infinite quantization case.

nfinite quantized output feedback case. For infinite quantiza-
ion, i.e., M = ∞, the choice of ∆(t) in Theorem 14 motivates
s to design ∆(t) as σ (t) such that σ (t) ∈ (0, 1) is a designed

signal that may be arbitrary. As mentioned in Remarks 7 and 10,
Assumptions (A5) and (A6) are no longer required for the infinite
quantized output feedback case.

Theorem 15. Given the Assumptions (A1)–(A4), if M = ∞ and
(t) is chosen as σ (t), then the adaptive control law (7) with pa-
ameter update laws (15)–(16), applied to system (1) with unknown
ai, bj and kp, ensures all closed-loop signals are bounded and
t2∑

t=t1

(y(t) − y∗(t))2 ≤ µ3 + µ4

t2∑
t=t1

∆2(t) (35)

for all t2 > t1 ≥ n + n∗ and some constants µi > 0, i = 3, 4.

Proof. If M = ∞, then (2) becomes q(y(t), ∆(t)) =

[
y(t)
∆(t) +

1
2

]
,

y ∈ R. In this case, regardless of the sensitivity ∆(t) changes,
(y(t), ∆(t)) is always not saturated. In other words, the in-
quality |s(y(t), ∆(t))| ≤

1
2∆(t) always holds. Especially, for

he particular choice of ∆(t), the derivations in the proof of
Theorem 14 are applicable to perform the proof of Theorem 15.
Moreover, the boundedness of y(t) can be derived from (34).
From (7), we derive that u(t) is bounded and thus, all closed-loop
signals are bounded. The conclusion of Theorem 15 results from
the above analysis. □

Theorem 15 specifies an analytical solution to the MRAC prob-
lem for system (1) utilizing a quantized output feedback. Specif-
ically, all signals and parameters in the adaptive control law (7)
and the update laws (15)–(16) are specified.

Considering that signal σ (t) can be designed arbitrarily, based
on Theorem 15 we obtain the following:

Corollary 1. Given Assumptions (A1)–(A4), if M = ∞ and ∆(t)
is chosen as σ (t) with

∑
∞

t=t3
σ (t) < ∞ for some t3 ≥ 0, then

the adaptive control law (7) with parameter update laws (15)–
(16), applied to system (1) with unknown ai, bj and kp, ensures all
closed-loop signals are bounded and asymptotic output tracking:

lim
t→∞

(y(t) − y∗(t)) = 0.

Proof. Based on the property
∑

∞

t=t3
σ (t) < ∞ for a finite t3 ≥ 0,

it is straightforward to obtain
∑

∞

t=t1
(y(t) − y∗(t))2 < ∞. Thus,

we derive that limt→∞(y(t)−y∗(t)) = 0. The closed-loop stability
analysis can be performed based on the proof of Theorem 15. □
6

Corollary 1 reveals an essential relationship between the in-
finite quantized output feedback MRAC and the exact output
feedback MRAC. In fact, the condition

∑
∞

t=t3
σ (t) < ∞ implies

that limt→∞ σ (t) = 0 and limt→∞ ∆(t) = 0. Then, it follows
from Lemma 13 that

∑
∞

t=t3
σ (t) < ∞ implies the convergence

of the quantized error s(y(t), ∆(t)). One can verify that, with
the quantized error s(y(t), ∆(t)) being zero, Corollary 1 degrades
into the classic MRAC result of system (1) with an exact output
feedback.

Although it may not be realistic to let sensitivity ∆(t) decay
to zero, Corollary 1 still indicates that the tracking error e(t)
for system (1) with quantized output feedback can converge to
an arbitrarily small residual set of the origin by appropriately
adjusting sensitivity ∆(t).

So far, we have given a positive answer to the question: a
quantized output feedback version of the classic MRAC scheme is
still effective or not? Specifically, several adaptive control meth-
ods under different design conditions have been formulated.

4. Simulation study

This section provides a representative example to illustrate the
design procedure and validity of the theoretical results.

Simulation model. Consider the following system

As(z)y(t) = kpsBs(z)u(t), (36)

where kps = 1, and

As(z) = (z + 1)(z − 2)
(
z +

1
2

)
, (37)

Bs(z) = z
(
z +

1
2

)
. (38)

t follows from (37) and (38) that As(z) is unstable and Bs(z) is
stable. Moreover, As(z) and Bs(z) have a common factor z +

1
2

hich corresponds to the uncontrollable or unobservable mode
f the state-space form of (36). In a word, the controlled plant
s minimum-phase, and its state-space form is allowed to be
nobservable or uncontrollable.

pecification of θ∗

1 , θ
∗

2 and y∗(t). Based on the system parameters
n (37) and (38) and following the procedure of deriving θ∗

1 and
θ∗

2 for standard output feedback MRC law of general LTI systems
in Tao (2003), we calculate θ∗

1 and θ∗

2 as

θ∗

1 =

[
0, −

1
2

]T
, θ∗

2 =

[
−1, −

5
2
, −

1
2

]T
. (39)

Moreover, φ1(t) and φ2(t) are specified as

φ1(t) = ω1(z)u(t), ω1(z) = [z−2, z−1
]
T , (40)

φ2(t) = ω2(z)y(t), ω2(z) = [z−2, z−1, 1]T . (41)

The reference output signal is chosen as

y∗(t) = r(t − 1) =
9
2
sin(t) −

3
2
cos(0.5t).

One can verify that the exact output tracking can be achieved by
applying the standard MRC law (5) with θ∗

1 and θ∗

2 in (39) and
φ1(t) and φ2(t) in (40)–(41) to the simulation model (36). The
arameters θ∗

1 and θ∗

2 , in addition to kps, are employed to describe
the simulation model and the adaptive control law to be designed
will only use their estimates.

Quantized output feedback MRAC law. The quantizer
q(y(t), ∆(t)) used in the simulation is in the form of (2) with

= ∞. In this case, t0 = 0, and the signal σ (t) is chosen as
(t) =

1
+

1 .
100 2+t
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Fig. 1. Trajectories of y(t) and y∗(t).

Fig. 2. Trajectory of the tracking error y(t) − y∗(t).

Fig. 3. Trajectory of the adaptive control law (42).

Based on (7), we define θi(t) as the estimates of θ∗

i with i =

, 2, 3 and θ∗

3 = 1/kps = 1. They are in the form of

1(t) = [θ11(t), θ12(t)]T ∈ R2,

θ2(t) = [θ21(t), θ22(t), θ23(t)]T ∈ R3,

3(t) ∈ R.

Thus, the adaptive control law for system (36) is designed as

u(t) = θ11(t)u(t − 2) + θ12(t)u(t − 1) + θ3(t)y∗(t + 1)
+ θ23(t)∆(t)q(y(t), ∆(t))
+ θ22(t)∆(t − 1)q(y(t − 1), ∆(t − 1))

+ θ21(t)∆(t − 2)q(y(t − 2), ∆(t − 2)), (42)

or all t ≥ 0. Note that u(−2), u(−1), y(−2), y(−1) are all set to
ero. The trajectory of the adaptive control law is shown in Fig. 3.

arameter update laws. Let ρ(t) be the estimate of kps. Define

θ (t) = [θ11(t), θ12(t), θ21(t), θ22(t), θ23(t), θ3(t)]T ∈ R6,

φ(t) = [u(t − 2), u(t − 1), ∆(t − 2)q(y(t − 2), ∆(t − 2)),
∆(t − 1)q(y(t − 1), ∆(t − 1)), ∆(t)q(y(t), ∆(t)),

y∗(t + 1)]T ∈ R6,
 s

7

Fig. 4. Trajectories of θ (t + 1) − θ (t) and ρ(t + 1) − ρ(t).

eq(t) = ∆(t)q(y(t), ∆(t)) − y∗(t) ∈ R,

q(t) = eq(t) + ρ(t)ξ (t) ∈ R,

ξ (t) = θ T (t)φ(t − 1) − θ T (t − 1)φ(t − 1) ∈ R,

m(t) =

√
1 + φT (t − 1)φ(t − 1) + ξ 2(t) ∈ R.

To update θi(t) in (42) and the introduced signal ρ(t), we design
he parameter update laws as

θ (t + 1) = θ (t) −
Γ ϵq(t)φ(t − n∗)

m2(t)
, (43)

ρ(t + 1) = ρ(t) −
γ ϵq(t)ξ (t)

m2(t)
, (44)

where Γ = 0.7I and γ = 1.9.

Simulation figures. By setting the initial values of θ (t) and ρ(t)
as zero, we apply the quantized output feedback MRAC law (42)
with the update laws (43) and (44) to the simulation model (36),
and derive the following system response.

Fig. 1 presents the response of y(t) of system (36) vs. the
reference output y∗(t). Fig. 2 gives the trajectory of the tracking
error e(t). From the two figures, we observe that the output track-
ing error y(t) − y∗(t) may not converge to zero asymptotically,
ue to the existence of the quantized error. However, the figures
ighlight that the tracking error converges to a small residual set
f the origin, indicating that the convergence of y(t)−y∗(t) shown
n Figs. 1 and 2 is consistent with the theoretical result (35) in
heorem 15.
To verify some key properties of the parameter estimates

hown in Lemma 8, we present Figs. 4 and 5. Specifically, Fig. 4

hows the response of the parameter adaption of θ (t) and ρ(t),
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Fig. 5. Trajectory of ϵq(t)/m(t).

and Fig. 5 gives the response of the auxiliary signal ϵq(t)/m(t).
Similar to the output tracking case, from Figs. 4 and 5, we see that
the signals θ (t+1)−θ (t) and ρ(t+1)−ρ(t) may not converge to
zero asymptotically. This is because the quantized error is always
non-zero, even for the case when t goes to infinity. However, the
signal trajectories shown in the two figures verify the theoretical
results (27) and (28) in Lemma 9.

In summary, the simulation study verifies the validity of the
proposed quantized output feedback MRAC scheme. Particularly,
recalling that As(z) and Bs(z) in the model (36) are not coprime,
the simulation also verifies the non-dependence of the proposed
method on the coprime condition of zero and pole polynomials.

5. Concluding remarks

This paper provides a positive answer to the fundamental
issue: whether a quantized output feedback version of the classic
MRAC scheme still works or not for a general class of minimum-
phase discrete-time LTI systems with unknown parameters.
Moreover, we establish a basic quantized output feedback MRAC
framework where the finite and infinite quantized output feed-
back cases are both addressed. Especially for the infinite quan-
tized case, an analytical MRAC solution by using quantized out-
put feedback is developed to ensure closed-loop stability and
bounded output tracking.

Future work would be appealing to address the following
questions: (i) how to integrate the saturation control technique
into the proposed adaptive control scheme to solve the closed-
loop stability problem that is still not solved in finite quantized
output feedback case? (ii) whether a quantized output feedback
version of the classical pole placement based adaptive control
scheme still works for a general class of discrete-time LTI systems
with unstable zeros and poles?

Appendix. Proofs of lemmas and theorems

Proof of Lemma 5. From (4), we have

(θ∗T
1 ω1(z) − 1)A(z) = (−kpθ∗T

2 ω2(z) − zn
∗

)B(z). (A.1)

We first consider the case when A(z) and B(z) are coprime. It
follows from (A.1) that, if zi is a zero of B(z), it must be a zero
of θ∗T

1 ω1(z) − 1, otherwise (A.1) does not hold for z = zi with
B(z) and A(z) coprime. Thus, we conclude that there exists a
polynomial F (z) = −z−m

+ fn∗−2z−m−1
+ · · · + f0z−n+1 with

fi, i = 0, . . . , n∗
− 2, being constants such that

F (z)B(z) = θ∗T
1 ω1(z) − 1. (A.2)

Together with (A.1), we obtain
∗T n∗
kpθ2 ω2(z) + F (z)A(z) = −z . (A.3)

8

Then, operating both sides of (A.3) on y(t) yields kpθ∗T
2 ω2(z)y(t)+

F (z)A(z)y(t) = −y(t + n∗). In addition to (1) and (6), it leads to

pθ
∗T
2 φ2(t) + kpF (z)B(z)u(t) = −y(t + n∗). (A.4)

ubstituting (A.2) to (A.4) derives

pθ
∗T
2 φ2(t) + kp(θ∗T

1 ω1(z) − 1)u(t) = −y(t + n∗).

sing (6) again, we get

pθ
∗T
2 φ2(t) + kpθ∗T

1 φ1(t) − kpu(t) = −y(t + n∗). (A.5)

ubstituting the quantized output feedback law (7) to (A.5), we
btain

pθ
∗T
2 φ2(t) + kpθ∗T

1 φ1(t) − kpθ T
2 (t)φq(t)

− kpθ T
1 (t)φ1(t) − kpθ3(t)r(t) = −y(t + n∗). (A.6)

ote that θ∗

3 =
1
kp

and r(t) = y∗(t + n∗). Thus, adding r(t) −

pθ2(t)φ2(t) to both sides of (A.6), we derive (22).
Considering the case when A(z) and B(z) are not coprime, we

ewrite B(z) as B(z) = B1(z)B2(z) such that B1(z) has degree n1,
nd B2(z) and A(z) are coprime. Then, there exist unique θ̄∗

1 ∈
n−1−n1 and θ∗

2 ∈ Rn such that

zn−1−n1 θ̄∗T
1 ω̄1(z)A(z) + kpθ∗T

2 zn−1ω2(z)B2(z)

=zn−1−n1A(z) − zn−1B2(z)zn
∗

(A.7)

with ω̄1(z) = [z−n+n1+1, . . . , z−1
]
T . With some manipulations,

(A.7) becomes

z−n1 θ̄∗T
1 ω̄1(z)A(z) + kpθ∗T

2 ω2(z)B2(z)

=z−n1A(z) − B2(z)zn
∗

. (A.8)

Similar to (A.2), there exists some polynomial of the form F̄ (z) =

−z−m+n1 + f̄n∗+n1−2z−m+n1−1
+ · · · + f̄0z−n+n1+1 such that

F̄ (z)B2(z) = θ̄∗T
1 ω̄1(z) − 1. Let F (z) = z−n1 F̄ (z). Then, in addi-

tion to (A.8), we also obtain (A.3), based on which the lemma’s
result follows. Note that, for the non-coprime case, the parameter
θ∗

1 is uniquely determined from the equation θ∗T
1 ω1(z) − 1 =

(θ̄∗T
1 ω1(z) − 1)B1(z)z−n1 = F (z)B(z). □

Proof of Lemma 9. With the modification terms fθi (t) and fρ(t)
in (18) and (19), one can verify that the parameter estimates
θ (t) ∈ L∞ and ρ(t) ∈ L∞.

From the definitions of φ(t) in (9), ϵq(t) in (13), and m(t) in
(17), one can also verify that ϵq(t)

m(t) ∈ L∞.
Now, we show that the inequalities (27) and (28) hold. We

introduce a positive definite function V (θ̃ , ρ̃) = |kp|θ̃ TΓ −1θ̃ +
−1ρ̃2. Then, with (24), we obtain

V (θ̃ (t + 1), ρ̃(t + 1)) − V (θ̃ (t), ρ̃(t))

= (θ̃ (t) −
sign[kp]Γ ϵq(t)φ(t − n∗)

m2(t)
+ fθ (t))TΓ −1(θ̃ (t)−

sign[kp]Γ ϵq(t)φ(t − n∗)
m2(t)

+ fθ (t)) − θ̃ T (t)Γ −1θ̃ (t)

+ γ −1

[(
ρ(t) −

γ ϵq(t)ξ (t)
m2(t)

+ fρ(t)
)2

− ρ2(t)

]

−

(
2 −

|kp|φT (t − n∗)Γ φ(t − n∗) + γ ξ 2(t)
m2(t)

)
ϵ2
q (t)

m2(t)
+ 2|kp|f Tθ (t)Γ −1(θ̃ (t) + pθ (t) + fθ (t))

+ 2γ −1fρ(t)(ρ̃(t) + pρ(t) + fρ(t)) − γ −1f 2ρ (t)

− |kp|f Tθ (t)Γ −1fθ (t) +
2ϵq(t)d1(t)

m2(t)
. (A.9)
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Let γ̄ = max{|k0p|γ1, . . . , |k0p|γ2n, γ }. Then, based on the defi-
nition of Γ below (16), we obtain that γ̄ < 2. Together with the
definition of m(t) in (17), we have |kp|φT (t−n∗)Γ φ(t−n∗)+γ ξ2(t)

m2(t)
≤ γ̄ <

2.
With the definition of Γ below (16), we have

2|kp|f Tθ (t)Γ −1(θ̃ (t) + pθ (t) + fθ (t))

=

2n∑
i=1

2γ −1
i |kp|fθi (t)(θ̃i(t) + pθi (t) + fθi (t))

which follows from (18) that

2|kp|f Tθ (t)Γ −1(θ̃ (t) + pθ (t) + fθ (t)) ≤ 0.

Similarly, with (19), one can also verify that

2γ −1fρ(t)(ρ̃(t) + pρ(t) + fρ(t)) ≤ 0. (A.10)

Thus, combining (A.9)–(A.10) yields that

V (θ̃ (t + 1), ρ̃(t + 1)) − V (θ̃ (t), ρ̃(t))

≤ −
(2 − γ̄ )

2

ϵ2
q (t)

m2(t)
+

4
2 − γ̄

d21(t)
m2(t)

which follows the boundedness of θ̃ (t) and ρ̃(t) that (27) holds.
With (15), it follows that (28) holds. □

Proof of Lemma 11. Recalling Eq. (A.5), we have

θ∗T
1 φ1(t) + θ∗T

2 φq(t) = u(t) −
1
kp

(y(t + n∗) − d0(t)). (A.11)

Combining (1), (23), and (A.11), we derive

φ̄(t + 1) = A∗φ̄(t) + b∗(y(t + n∗) − d0(t)) + d2(t). (A.12)

Next, we demonstrate that A∗ is stable. Note that when using
exact output feedback, i.e., s(y(t), ∆(t)) = 0, the dynamic system
(A.12) with respect to φ̄(t) becomes

φ̄(t + 1) = A∗φ̄(t) + b∗y(t + n∗) (A.13)

which reveals that A∗ is stable. Let the first variable of φ̄(t) be the
output of system (A.13). Thus, for system (A.13) with y(t + n∗) as
the virtual input and z−n+1u(t) as the virtual output, we derive
an input–output description for system (A.13):

z−n+1u(t) = c∗(zI2n−1 − A∗)−1b∗y(t + n∗), (A.14)

where c∗
= [1, 0, . . . , 0] ∈ R1×(2n−1). With A(z)y(t) = kpB(z)u(t),

it derives from (A.14) that

A(z)z−n+1u(t) = kpc∗(zI2n−1 − A∗)−1b∗zn
∗

B(z)u(t).

This equation implies that

det{zI2n−1 − A∗
} = zn+n∗

−1B(z)

which follows from Assumption (A1) that the eigenvalues of A∗

are all inside the unit circle of the z-complex plane, i.e., A∗ is
stable. □

Proof of Theorem 14. Based on Lemma 6, we observe that
q(y(t), ∆(t)) is not saturated at t = t0. Now, given that
q(y(t), ∆(t)) is not saturated for all t ≥ t0, we provide the
following analysis. It follows from Lemma 13 that

|s(y(t), ∆(t))| ≤
1
2
∆(t).

hen, (27), (28), and (30) can be rewritten as
t2∑ ϵ2

q (t)

m2(t)
≤ α1 + β1

t2∑ ∆2(t)
m2(t)

, (A.15)

t=t1 t=t1

9

t2∑
t=t1

∥θ (t + t0) − θ (t)∥2
2 ≤ α2 + β2

t2∑
t=t1

∆2(t)
m2(t)

, (A.16)

∥φ̄(t + 1)∥ ≤ (c0 + c1ω(t))∥φ̄(t)∥ + c2∆(t)

+ |b∗y∗(t + n∗)|, (A.17)

for some positive constant c2 independent of ∆(t). To reduce
notation, we still use β1 and β2 in (A.15) and (A.16), respectively.

With (A.15) and (A.16), we derive from (31) that
t1+t2∑
t=t1

ω2(t) ≤ c4 + c3
t1+t2∑

t=t1−n∗

∆2(t)
1 + ∥φ̄(t)∥2

(A.18)

or some positive constants c3 and c4 independent of ∆(t). Com-
ining (14), (26) and (32), we obtain

¯ (t + 1) = A∗φ̄(t) + b∗y∗(t + n∗)

+ b∗kp(θ T (t) − θ∗)φ(t) + d2(t).

t follows from (11) that

¯ (t + 1) = (A∗
+ b∗kp(θ̄ T (t) − θ̄∗T ))φ̄(t)

+ b∗kpθ3(t)y∗(t + n∗) + d2(t)

ith θ̄ (t) = [θ T
1 (t), θ

T
2 (t)]

T and θ̄∗
= [θ∗T

1 , θ∗T
2 ]

T . The above
quation implies that

φ̄(t + 1)∥ ≤ c5∥φ̄(t)∥ + c6 + c7∆(t) (A.19)

or some positive constants ci, i = 5, 6, 7, independent of ∆(t).
Note that ∆(t) grows at most exponentially, indicating that φ̄(t)
grows at most exponentially.

Next, we assume that φ̄(t) grows unboundedly. Then, for any
given δ0 > 0 and t4 > 0, property (A.19) guarantees that we can
find δ ∈ (0, δ0] and t3 > 0 such that

∥φ̄(t)∥ ≥
1
δ0

, t ∈ {t3 − n∗, . . . , t3 − 1}, (A.20)

φ̄(t)∥ =
1
δ
, t = t3, (A.21)

φ̄(t)∥ ≥
1
δ
, t ∈ {t3 + 1, . . . , t3 + t4 + 1}. (A.22)

Based on the inequalities x1+···+xp
p ≤

√
x21+···+x2p

p , x1+···+xp
p ≥

(x1 · · · xp)1/p, and ep ≥ p + 1, in addition to (A.18), (A.20)–(A.22),
we derive

t3+j∏
t=t3

(c0 + c1ω(t)) ≤

(
c0 +

c1
j + 1

t3+j∑
t=t3

ω(t)

)j+1

≤

(
c0 + c1δ0∆

√
c3(n∗ + 1) + c1

√
c4

√
j + 1

)
≤

(
c0 + c1δ0∆

√
c3(n∗ + 1)

)j+1
e

c1
√c4

c0+c1δ0∆
√

c3(n∗+1)

√
j+1

. (A.23)

From (A.23), we can choose

δ0 <
1 − c0

c1∆
√
c3(n∗ + 1)

(A.24)

o that

0 + c1δ0∆
√
c3(n∗ + 1) < 1.

ote that the last term of (A.23) decays to zero with respect to j.
hus, there exists some j1 ≥ 0 such that
t3+j∏

(c0 + c1ω(t)) <
1
2
, ∀j ≥ j1. (A.25)
t=t3



Y. Zhang and J.-F. Zhang Automatica 145 (2022) 110575

B

∥

ased on (A.17) and the boundedness of ω(t), we have

φ̄(t3 + j + 1)∥ ≤

t3+j∏
t=t3

(c0 + c1ω(t))∥φ̄(t3)∥

+ c8∆(t) + c9 (A.26)

for some positive constants c8 and c9 independent of ∆(t). From
(A.24) and (A.26), we choose δ0 such that

δ0 ∈

(
0,min{

1 − c0
c1∆(t)

√
c3(n∗ + 1)

,
1

2(c8∆(t) + c9)
}

)
.

Then, for such a δ0 and t4 ≥ j1, it follows from (A.25) and (A.26)
that

∥φ̄(t3 + j + 1)∥ <
1
δ
, j ∈ {t3 + j1, . . . , t3 + t4 + 1}

which contradicts (A.22). Thus, we conclude that φ̄(t) is bounded,
and (34) follows from (13)–(14) and (27)–(28). □
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